Tetrahedron: Asymmetry Vol. 2, No. 3, pp. 165-168, 1991 Printed in Great Britain

Lipase-Catalyzed Enantioselective Esterification of 2-Methylalkanoic Acids

Karl-Heinz Engel Technische Universität Berlin, Institut für Biotechnologie, Fachgebiet Chemischtechnische Analyse, Seestr.13, 1000 Berlin 65, Germany

(Received 22 January 1991)

Abstract: A preference for (S)-enantiomers has been observed in the course of the esterification of racemic 2-methylalkanoic acids catalyzed by lipase from *Candida cylindracea* in heptane.

Optically pure 2-alkylalkanoic acids are useful building blocks for syntheses of biologically active compounds with branched-chain structures, e.g. pheromones¹. Short chain 2-methylalkanoic acids and their esters occur naturally in various foods² and contribute significantly to their aroma; an almost exclusive presence of the (S)-enantiomers has been demonstrated³. The need for 2-methylalkanoic acids of high enantiomeric purity is reflected by the various chemical approaches to their asymmetric synthesis⁴. Kinetic resolution of the racemic acids and esters, respectively, by means of enantioselective lipase-catalyzed reactions, an area of increasing importance⁵, could be a useful alternative to chemical procedures. For structurally related 2-substituted acids, such as 2-hydroxyalkanoic acids⁶, 2-chloro- and 2-bromoalkanoic acids⁷, 2-arylpropionic acids 8 , 2-phenoxypropionic acids 9 and 3-aroylthio-2-methylpropionic acids 10 this strategy has been successfully applied. 2-Methylalkanoic acids, on the other hand, have been reported as inhibitors of some lipases 7,11 . For the esterifications described 12,13,14 a possible stereodifferentiation has only been indicated by an increased reaction rate of one enantiomer compared to the racemate¹⁴. However, detailed investigations of a potential kinetic resolution of 2-methylalkanoic acid enantiomers by means of lipase-catalyzed esterification have been lacking.

The present study demonstrated that lipase from *Candida cylindracea* (CCL) preferentially catalyzes the esterification of (S)-configurated 2-methylalkanoic acids according to Scheme 1.

Scheme 1

K.-H. ENGEL

In a typical experiment 500 mg of the commercially available enzyme preparation (Sigma L 1754, 750 olive oil units per mg of solid), 0.5 mMol 2-methylalkanoic acid and alcohol, respectively, and 10μ l hexadecane as internal standard were added to 5 ml heptane. The mixture was shaken at room temperature; the conversion rate was monitored by means of gas chromatographic analysis of aliquote parts. Products and remaining substrate were separated by means of liquid-solid chromatography on silica gel. Their optical purities were determined via capillary GC separations of diastereometric (R)-1-phenylethylamides and (S)-2-octylesters, respectively. The data obtained are summarized in Table 1.

substrates		t	conversion ^a	(R)-acid ^{b, c}	(S)-ester ^b E ^g		
R	ł	R⁺−OH	(h)	(%)	e.e. (%) ^d	e.e. (%) ^e	, t
1a C	² 2 ^H 5	methanol	4	48	34.2	37.3	3
1b C	² 2 ^H 5	ethanol	5	50	34.4	34.4	3
1c C	$_{2}^{H_{5}}$	cyclohexanol	8	54	45.4	38.5	3
1d C	$C_{2}^{H_{5}}$	octano1	7	53	48.9	43.4	4
1e C	² 2 ^H 5	octadecano1	3	51	51.9	50.6	5
2a C	с ₃ н ₇	3-methy1-2-buten-1-ol	9	38	52.0	84.5	20
2b C	² 3 ^H 7	octanol	10	46	79.5	93.3	70
2c C	3 ^H 7	octadecano1	12	45	72.3	88.3	35
3a C	C ₄ H ₉	ethanol	24	32	6.3	13.2	1.4
3b C	² 4 ^H 9	butano1	18	55	70.1	58.4	8
3c C	2 ₄ H ₉	cyclohexanol	20	49	67.9	71.3	12
3đ C	² 4 ^H 9	cyclohexylmethanol	12	44	60.6	77.1	14
3e C	2 ₄ H ₉	octanol	22	49	76.2	79.6	20
3f C	² 4 ^H 9	(R)-(-)-octan-2-o1	50	23	27.1	89.3	23
3g C	² 4 ^H 9	(S)-(+)-octan-2-ol	50	10	10.4	93.8	35
3h C	C4H9	decano1	19	48	75.2	83.2	25
3i C	² 4 ^H 9	octadecanol	18	50	84.0	84.0	30

Table 1: CCL-catalyzed esterification of racemic 2-methylalkanoic acids via Scheme 1

^aGC: DB Wax; ^bLSC: silica gel, ester: pentane/CH₂Cl₂ (1:2), acid: ether; ^cassignment of configurations: (1) 2-methylbutanoic acid: GC of reference compound (S)-2-methylbutanoic acid (98%, Aldrich); (2) 2-methylpentanoic acid: entry 2b (2.5 mMol substrates, 53% conversion), e.e. $_{(GC)}$ =98%, $[\alpha]_D^{-2}$ = -20.1 (c=5.5, Et₂O), ref.¹⁵ $[\alpha]_D^{-20}$ = -18.4 (neat); (3) 2-methylhexanoic acid: entry 3i (2.5 mMol substrates, 56% conversion), e.e. $_{(GC)}$ =97%, $[\alpha]_D^{-20}$ = -20.2 (c=5.3, Et₂O), ref^{4d} $[\alpha]_D^{-22}$ = -21.9 (c=5.5, Et₂O); ^d2-methylbutanoic acid: + (R)-(+)-1-phenylethylisocyanate/toluene, 100°C, 12 h; GC: DB 210; 2-methylpentanoic acid: + (S)-(+)-octan-2-ol/acetylchloride (5:1), 80°C, 15 h; GC: DB 210; ^ealkaline hydrolysis prior to derivatization; ^fd.e.(%) for entries 3f and g; ^gcf. ref.¹⁶

166

The present results confirm the formerly described capability of crude¹² and polyethylene glycol-modified¹³ lipase from *Candida cylindracea* to catalyze esterifications of 2-methylalkanoic acids. They demonstrate that in contrary to previous conclusions⁷ the acceptance of 2-substituted acids as substrates by this enzyme does not necessarily require an electron-withdrawing group in C₂-position.

Two aspects are noteworthy from a mechanistical standpoint of view: (1) the stereochemical course of the esterification of 2-methylalkanoic acids is opposite to enantiodiscriminations observed for analogous acids with a halogen substituent⁷; (2) the enantioselectivity (E) of the reaction, expressed as ratio of the specificity constants for the two enantiomers¹⁶, is markedly influenced by the structures of the substrates. The effect of the alcohol chain length on the discrimination of 2-methylhexanoic acid enantiomers (3a-3i) is similar to results obtained for the CCL-catalyzed esterification of 2-(4-chlorophenoxy)propanoic acid^{9b}. On the other hand, the poor enantioselectivity determined for reactions of 2-methylbutanoic acid (1a-1e) cannot be significantly improved by alterations of the alcohol structure.

A methyl substituent in C_2 -position of the acid substrates causes a sharp decrease of the esterification rate compared to the unbranched acid (Table 2). A similar effect has been observed for reactions catalyzed by immobilized lipase from *Mucor miehei*¹⁴. Introduction of additional branching in the alcohol molety (3f,g) leads to increased enantio-selection. The attractive potential for kinetic resolution of two racemic substrates in one enzyme-catalyzed step deserves further investigations. although the additionally reduced reaction rates (Table 2) seem unfeasible for preparative applications.

substrates acid	alcohol	relative	reaction (%)	rate
hexanoic acid	octanol		100 ^a	
2-methylbutanoic acid	octano1		50	
2-methylpentanoic acid	octano1		30	
2-methylhexanoic acid	octanol		14	
2-methylhexanoic acid	(R)-(-)-octan-2-ol		3	
2-methylhexanoic acid	(S)-(+)-octan-2-ol		1	

Table 2: Structural influences on the reaction rate of CCL-catalyzed esterifications

 $a_v = 0.15 \ \mu Mol^{-1} mg^{-1} CCL$

The use of octanol (2b) and octadecanol (3i) as acyl acceptors leads to sufficient enantiodiscrimination of 2-methylpentanoic and 2-methylhexanoic acid, respectively. Both enantiomers can be obtained in highly pure form, especially if optically enriched mate-

K.-H. ENGEL

rial is subjected to a repetitive esterification $^{16}.$ Possible limitations of the procedure caused by decreasing optical purities at higher conversion rates due to reversible reactions¹⁷ are currently under detailed investigation.

Acknowledgment: The skillful technical assistance by Mrs. Irmgard Roling is gratefully acknowledged.

References

- 1. a) M. Larcheveque, E. Ignatova and T. Cuvigny J. Organomet. Chem. <u>177</u>, 5 (1979);
 - b) S. Byström. H.-E. Högberg and T. Norin Tetrahedron 37, 2249 (1981);
 - c) E. Zeeck, J.D. Hardege, H. Bartels-Hardege and G. Wesselmann Tetrahedron Lett. <u>31</u>, 5613 (1990)
- 2. H. Maarse and C.A. Viisher "Volatile compounds in food Qualitative data", CIVO-TNO (1984).
- 3. a) G. Takeoka, R.A. Flath, T.R. Mon, R.G. Buttery, R. Teranishi, M. Güntert,
 - R. Lautamo and S. Szejtli J. High Resol. Chromatogr. <u>13</u>, 202 (1990);
 b) A. Mosandl, K. Rettinger, K. Fischer, V. Schubert, H.-G. Schmarr and B. Maas, J. High Resol. Chromatogr. <u>13</u>, 382 (1990)
- 4. a) A.I. Meyers, G. Knaus, K. Kamata and M.E. Ford J. Am. Chem. Soc. <u>98</u>, 567 (1976); b) P.E. Sonnet and R.R. Heath J. Org. Chem. <u>45</u>, 3137 (1980);
 - c) D.A. Evans and J.M. Takacs Tetrahedron Lett. 21, 4233 (1980);

 - d) H.L. Goering and C.C. Tseng J. Org. Chem. <u>48</u>, 3986 (1983);
 - e) K. Maruoka, S. Nakai, M. Sakurai and H. Yamamoto Synthesis 130 (1986);
 - f) W.D. Lubell and H. Rapoport J. Am. Chem. Soc. 110, 7447 (1988);
- g) Y. Petit, C. Sanner and M. Larcheveque Tetrahedron Lett. 31, 2149 (1990)
- 5. C.J. Sih and S.-H. Wu Top. Stereochem. 19, 63 (1989)
- 6. P. Kalaritis, R.W. Regenye, J.J. Partridge and D.L. Coffen J. Org. Chem. 55, 812 (1990)
- 7. G. Kirchner, M.P. Scollar and A.M. Klibanov J. Am. Chem. Soc. 107, 7072 (1985)
- 8. Q.-M. Gu, C.-S. Chen and C.J. Sih Tetrahedron Lett. 27, 1763 (1986)
- 9. a) M.J. Barton, J.P. Hamman, K.C. Fichter and G.J. Calton Enz. Microb. Technol. 12, 577 (1990);
- b) A. Tanaka and K. Sonomoto CHEMTECH 112 (1990)
- 10. Q.-M. Gu, D.R. Reddy and C.J. Sih Tetrahedron Lett. 27, 5203 (1986)
- 11. K. Takahashi, Y. Saito and Y. Inada J. Am. Oil Chem. Soc. 65, 911 (1988)
- G. Lazar Fette, Seifen, Anstrichm. <u>87</u>, 394 (1985)
 Y. Kodera, K.Takahashi, H. Nishimura, A. Matsushima, Y. Saito and Y. Inada Biotechnol. Lett. 8, 881 (1986)
- 14. C. Miller, H. Austin, L. Posorske and J. Gonzlez J. Am. Oil Chem Soc. 65, 927 (1986)
- 15. P.A. Levene and R.E. Marker J. Biol. Chem. <u>98</u>, 1 (1932)
- 16. C.-S. Chen, Y. Fujimoto, G. Girdaukas and C.J. Sih J. Am. Chem. Soc. 104, 7294 (1982)
- 17. C.-S. Chen, S.-H. Wu, G. Girdaukas and C.J. Sih J. Am. Chem. Soc. 109, 2812 (1987)

168